Elementarmatrix

Unter einer Elementarmatrix oder Eliminationsmatrix versteht man in der linearen Algebra eine quadratische Matrix, welche sich entweder durch die Änderung eines einzigen Eintrages oder durch Vertauschen zweier Zeilen von einer -Einheitsmatrix unterscheidet.

Die Matrixmultiplikation mit Elementarmatrizen führt zu den sogenannten elementaren Zeilen- und Spaltenumformungen. Diese Matrixumformungen umfassen das Addieren des -fachen einer Zeile zu einer anderen, das Vertauschen von zwei Zeilen und das Multiplizieren einer einzelnen Zeile mit einem von Null verschiedenen Wert . Multipliziert man eine -Matrix von links mit einer Elementarmatrix, so entspricht das einer elementaren Zeilenumformung der Matrix . Elementarmatrizen können auch von rechts an eine Matrix multipliziert werden und entsprechen dann elementaren Spaltenumformungen von .

Die Elementarmatrizen sind die Grundlage für den Gauß-Algorithmus und die Äquivalenztransformation. Mit ihnen kann ein lineares Gleichungssystem, welches in eine Matrix überführt wurde, auf Stufenform gebracht werden, um dann die Lösung des Systems nach speziellen Regeln abzulesen.


Developed by StudentB