Unter einer Elementarmatrix oder Eliminationsmatrix versteht man in der linearen Algebra eine quadratische Matrix, welche sich entweder durch die Änderung eines einzigen Eintrages oder durch Vertauschen zweier Zeilen von einer -Einheitsmatrix unterscheidet.
Die Matrixmultiplikation mit Elementarmatrizen führt zu den sogenannten elementaren Zeilen- und Spaltenumformungen. Diese Matrixumformungen umfassen das Addieren des -fachen einer Zeile zu einer anderen, das Vertauschen von zwei Zeilen und das Multiplizieren einer einzelnen Zeile mit einem von Null verschiedenen Wert . Multipliziert man eine -Matrix von links mit einer Elementarmatrix, so entspricht das einer elementaren Zeilenumformung der Matrix . Elementarmatrizen können auch von rechts an eine Matrix multipliziert werden und entsprechen dann elementaren Spaltenumformungen von .
Die Elementarmatrizen sind die Grundlage für den Gauß-Algorithmus und die Äquivalenztransformation. Mit ihnen kann ein lineares Gleichungssystem, welches in eine Matrix überführt wurde, auf Stufenform gebracht werden, um dann die Lösung des Systems nach speziellen Regeln abzulesen.